

    
      
          
            
  


scikit-surgerytf documentation


Features/Networks


	Liver Segmentation UNet [https://scikit-surgerytf.readthedocs.io/en/latest/module_ref.html#segmentation]: Based on https://doi.org/10.1007/978-3-319-24574-4_28.


	The usual FashionMNIST example [https://scikit-surgerytf.readthedocs.io/en/latest/module_ref.html#module-sksurgerytf.models.fashion], for learning purposes.




Source code [https://github.com/UCL/scikit-surgerytf/] is avaialble on GitHub.



	scikit-surgerytf
	Features/Networks

	Design Principles

	Usage

	Developing

	Installing

	Contributing

	Useful links

	Licensing and copyright

	Acknowledgements










Module Reference


	Segmentation
	Liver Segmentation UNet





	Fashion MNIST Example Classifer









          

      

      

    

  

    
      
          
            
  


scikit-surgerytf

[image: Logo]
 [https://github.com/UCL/scikit-surgerytf][image: GitHub Actions CI status]
 [https://github.com/UCL/scikit-surgerytf/actions][image: Test coverage]
 [https://coveralls.io/github/UCL/scikit-surgerytf?branch=master][image: Documentation Status]
 [http://scikit-surgerytf.readthedocs.io/en/latest/?badge=latest]Author: Matt Clarkson

scikit-surgerytf is part of the SNAPPY [https://weisslab.cs.ucl.ac.uk/WEISS/PlatformManagement/SNAPPY/wikis/home] software project, developed at the Wellcome EPSRC Centre for Interventional and Surgical Sciences [http://www.ucl.ac.uk/weiss], part of University College London (UCL) [http://www.ucl.ac.uk/].

scikit-surgerytf supports Python 3.6+, and tensorflow >= 2.0.0.

The aim of scikit-surgerytf is to provide a home for various Tensor Flow examples and
utilities and to show best practice. It’s NOT meant to be a layer on-top of Tensor Flow
or provide a new kind-of platform. The aim is that researchers can learn from examples,
and importantly, learn how to deliver an algorithm that can be used by other people
out of the box, with just a `pip install`, rather than a new user having to
re-implement stuff, or struggle to get someone else’s code running. Researchers
can commit their research to this repository, or use the PythonTemplate [https://weisslab.cs.ucl.ac.uk/WEISS/SoftwareRepositories/PythonTemplate] to
generate their own project as a home for their new world-beating algorithm!


Features/Networks


	Liver Segmentation UNet [https://scikit-surgerytf.readthedocs.io/en/latest/module_ref.html#segmentation]: Based on https://doi.org/10.1007/978-3-319-24574-4_28.


	The usual FashionMNIST example [https://scikit-surgerytf.readthedocs.io/en/latest/module_ref.html#module-sksurgerytf.models.fashion], for learning purposes.






Design Principles

Each project herein should provide the following:


	Code that passes pylint.


	Unit testing, as appropriate. In all likelihood, testing will cover individual functions, not large training cycles.


	Sufficient logging, including date, time, software (git) version, runtime folder, machine name.


	A main class containing a network that can be run separately in train/test mode.


	Visualisation with TensorBoard.


	Saving of learned network weights at the end of training.


	Loading of pre-train weights, initialising the network ready for inference.


	The ability to be run repeatedly for hyper-parameter tuning via python scripting, not bash.


	The ability to be callable from within a Jupyter Notebook, and thereby amenable to weekly writup’s for supervisions.


	One or more command line programs that are pip-installable, enabling a subsequent user to train and test your algorithm with almost-zero faff.


	Visualisation for debugging purposes, such as printing example image thumbnails etc. should be done in Jupyter notebooks, or in tensorboard, not in the same class as your algorithm.




Optional features could include:


	Small test projects that train quickly to completion won’t need checkpointing, but large ones will.






Usage

Typical instructions for use:

First create a clean python environment, just installing tox:

# Create a clean conda environment
conda create -n myenv python=3.6
conda activate myenv
pip install tox





Then you get the code, and use tox to install all other dependencies:

git clone https://github.com/UCL/scikit-surgerytf
cd scikit-surgerytf
# edit requirements.txt, changing tensorflow to tensorflow-gpu.
# The default is the CPU version just for cross platform testing,
# but for real use, you should swap it to GPU.
# Then run tox to install all dependencies.
tox





Then you can activate the tox created virtualenv and run top-level entry points directly from the root folder:

source .tox/py36/bin/activate
python sksurgeryrgbunet.py --help





Windows users would run:

.tox\py36\Scripts\activate
python sksurgeryrgbunet.py --help





So, for example, to run the sksurgeryrgbunet.py program and train on some data, you would do:

python sksurgeryrgbunet.py -d DATA -w working_dir -s output.hdf5





where DATA is a directory like:

DATA/P1/masks
DATA/P1/images
DATA/P2/masks
DATA/P2/images
.
.
DATA/PN/masks
DATA/PN/images





and P1,P2..PN just represents some patient identifier. Images and masks, though in different
folders, must have the same name.



Developing


Cloning

You can clone the repository using the following command:

git clone https://github.com/UCL/scikit-surgerytf







Running tests

Pytest is used for running unit tests, but you should run using tox,
as per the PythonTemplate [https://weisslab.cs.ucl.ac.uk/WEISS/SoftwareRepositories/PythonTemplate] instructions.



Linting

This code conforms to the PEP8 standard. Pylint is used to analyse the code.
Again, follow the PythonTemplate [https://weisslab.cs.ucl.ac.uk/WEISS/SoftwareRepositories/PythonTemplate] instructions and run via tox.




Installing

You can pip install directly from the repository as follows:

pip install git+https://github.com/UCL/scikit-surgerytf







Contributing

Please see the contributing guidelines [https://github.com/UCL/scikit-surgerytf/blob/master/CONTRIBUTING.rst].



Useful links


	Source code repository [https://github.com/UCL/scikit-surgerytf]


	Documentation [https://scikit-surgerytf.readthedocs.io]






Licensing and copyright

Copyright 2019 University College London.
scikit-surgerytf is released under the Apache Software License 2.0. Please see the license file [https://github.com/UCL/scikit-surgerytf/blob/master/LICENSE] for details.



Acknowledgements

Supported by Wellcome [https://wellcome.ac.uk/] and EPSRC [https://www.epsrc.ac.uk/].





          

      

      

    

  

    
      
          
            
  


Segmentation


Liver Segmentation UNet

Module to implement a semantic (pixelwise) segmentation using UNet on 512x512.


	
class sksurgerytf.models.rgb_unet.RGBUNet(logs='logs/fit', data=None, working=None, omit=None, model=None, learning_rate=0.0001, epochs=50, batch_size=2, input_size=(512, 512, 3), patience=20)

	Class to encapsulate RGB UNet semantic (pixelwise) segmentation network.

Thanks to
Zhixuhao [https://github.com/zhixuhao/unet/blob/master/model.py],
and
ShawDa [https://github.com/ShawDa/unet-rgb/blob/master/unet.py]
for getting me started, and
`Harshall Lamba <https://towardsdatascience.com/understanding-semantic-segmentation-with-unet-6be4f42d4b47>_,
for further inspiration.


	
predict(rgb_image)

	Method to test a single image. Image resized to match network,
segmented and then resized back to match the input size.


	Parameters

	rgb_image – 3 channel RGB, [0-255], uchar.



	Returns

	single channel, [0=bg|255=fg].










	
save_model(filename)

	Method to save the whole trained network to disk.


	Parameters

	filename – file to save to.










	
train()

	Method to train the neural network. Writes each epoch
to tensorboard log files.


	Returns

	output of self.model.evaluate on validation set, or None.














	
sksurgerytf.models.rgb_unet.run_rgb_unet_model(logs, data, working, omit, model, save, test, prediction, epochs, batch_size, learning_rate, patience)

	Helper function to run the RGBUnet model from
the command line entry point.


	Parameters

	
	logs – directory for log files for tensorboard.


	data – root directory of training data.


	working – working directory for organising data.


	omit – patient identifier to omit, when doing Leave-One-Out.


	model – file of previously saved model.


	save – file to save model to.


	test – input image to test.


	prediction – output image, the result of the prediction on test image.


	epochs – number of epochs.


	batch_size – batch size.


	learning_rate – learning rate for optimizer.


	patience – number of steps to tolerate non-improving accuracy















Fashion MNIST Example Classifer

Module to implement a basic classifier for the Fashion MNIST dataset.
The aim of this module is to demonstrate how to create a class
that can be developed, tested and re-used effectively. It is not
a demonstration on how to do deep learning, or classification per se.

Inspired by
TensorFlow tutorials [https://www.tensorflow.org/tutorials/keras/classification].


	
class sksurgerytf.models.fashion.FashionMNIST(logs='logs/fit', model=None, learning_rate=0.001, epochs=1)

	Class to encapsulate a classifier for the Fashion MNIST dataset.


	
extract_failures(number_to_fetch)

	Returns incorrectly classified test images.
:param number_to_fetch: int, the number to find.

This method is slow, its only for demo purposes.


	Returns

	indexes, images, predicted, labels










	
get_class_names()

	Returns a copy of the valid class names. We return copies
to stop external people accidentally editing the internal copies.
It’s safer in the long run, although in Python easy to work around.


	Returns

	list of strings










	
get_test_image(index)

	Extracts an image from the test data. Useful for unit testing,
as the original data comes packaged up in a zip file.


	Parameters

	index – int [0-9999], unchecked



	Returns

	image, (28 x 28), numpy, single channel, [0-255], uchar.










	
save_model(filename)

	Method to save the whole trained network to disk.


	Parameters

	filename – file to save to.










	
test(image)

	Method to test a single (28 x 28) image.


	Parameters

	image – (28 x 28), numpy, single channel, [0-255], uchar.



	Returns

	(class_index, class_name)










	
train()

	Method to train the neural network. Writes each epoch
to tensorboard log files.


	Returns

	output of self.model.evaluate on test set.














	
sksurgerytf.models.fashion.run_fashion_model(logs, model, save, test)

	Helper function to run the Fashion MNIST model from
the command line entry point.


	Parameters

	
	logs – directory for log files for tensorboard.


	model – file of previously saved model.


	save – file to save weights to


	test – image to test















          

      

      

    

  

    
      
          
            

   Python Module Index


   
   c | 
   m | 
   s | 
   u
   


   
     		 	

     		
       c	

     
       	[image: -]
       	
       sksurgerytf.callbacks	
       

     
       	
       	   
       sksurgerytf.callbacks.segmentation_history	
       

     		 	

     		
       m	

     
       	[image: -]
       	
       sksurgerytf.models	
       

     
       	
       	   
       sksurgerytf.models.fashion	
       

     
       	
       	   
       sksurgerytf.models.rgb_unet	
       

     		 	

     		
       s	

     
       	
       	
       sksurgeryfashion	
       

     
       	
       	
       sksurgeryrgbunet	
       

     
       	
       	
       sksurgerysegstats	
       

     
       	
       	
       sksurgerytf	
       

     		 	

     		
       u	

     
       	[image: -]
       	
       sksurgerytf.ui	
       

     
       	
       	   
       sksurgerytf.ui.sksurgery_fashion_command_line	
       

     
       	
       	   
       sksurgerytf.ui.sksurgery_rgbunet_command_line	
       

     
       	
       	   
       sksurgerytf.ui.sksurgery_segstats_command_line	
       

     
       	[image: -]
       	
       sksurgerytf.utils	
       

     
       	
       	   
       sksurgerytf.utils.segmentation_statistics	
       

   



          

      

      

    

  

    
      
          
            

Index



 C
 | E
 | F
 | G
 | M
 | O
 | P
 | R
 | S
 | T
 


C


  	
      	calculate_dice() (in module sksurgerytf.utils.segmentation_statistics)


  

  	
      	check_same_size() (in module sksurgerytf.utils.segmentation_statistics)


  





E


  	
      	extract_failures() (sksurgerytf.models.fashion.FashionMNIST method), [1]


  





F


  	
      	FashionMNIST (class in sksurgerytf.models.fashion), [1]


  





G


  	
      	get_class_names() (sksurgerytf.models.fashion.FashionMNIST method), [1]


      	get_confusion_matrix() (in module sksurgerytf.utils.segmentation_statistics)


  

  	
      	get_sorted_files_from_dir() (in module sksurgerytf.utils.segmentation_statistics)


      	get_test_image() (sksurgerytf.models.fashion.FashionMNIST method), [1]


  





M


  	
      	main() (in module sksurgerytf.ui.sksurgery_fashion_command_line)

      
        	(in module sksurgerytf.ui.sksurgery_rgbunet_command_line)


        	(in module sksurgerytf.ui.sksurgery_segstats_command_line)


      


  





O


  	
      	on_epoch_end() (sksurgerytf.callbacks.segmentation_history.SegmentationHistory method)


  





P


  	
      	predict() (sksurgerytf.models.rgb_unet.RGBUNet method), [1]


  





R


  	
      	RGBUNet (class in sksurgerytf.models.rgb_unet), [1]


      	run_fashion_model() (in module sksurgerytf.models.fashion), [1]


  

  	
      	run_rgb_unet_model() (in module sksurgerytf.models.rgb_unet), [1]


      	run_seg_stats() (in module sksurgerytf.utils.segmentation_statistics)


  





S


  	
      	save_model() (sksurgerytf.models.fashion.FashionMNIST method), [1]

      
        	(sksurgerytf.models.rgb_unet.RGBUNet method), [1]


      


      	save_to_tensorboard() (sksurgerytf.callbacks.segmentation_history.SegmentationHistory method)


      	SegmentationHistory (class in sksurgerytf.callbacks.segmentation_history)


      	sksurgeryfashion (module)


      	sksurgeryrgbunet (module)


      	sksurgerysegstats (module)


      	sksurgerytf (module)


      	sksurgerytf.callbacks (module)


  

  	
      	sksurgerytf.callbacks.segmentation_history (module)


      	sksurgerytf.models (module)


      	sksurgerytf.models.fashion (module), [1]


      	sksurgerytf.models.rgb_unet (module), [1]


      	sksurgerytf.ui (module)


      	sksurgerytf.ui.sksurgery_fashion_command_line (module)


      	sksurgerytf.ui.sksurgery_rgbunet_command_line (module)


      	sksurgerytf.ui.sksurgery_segstats_command_line (module)


      	sksurgerytf.utils (module)


      	sksurgerytf.utils.segmentation_statistics (module)


  





T


  	
      	test() (sksurgerytf.models.fashion.FashionMNIST method), [1]


  

  	
      	train() (sksurgerytf.models.fashion.FashionMNIST method), [1]

      
        	(sksurgerytf.models.rgb_unet.RGBUNet method), [1]


      


  







          

      

      

    

  

    
      
          
            
  


stable



	sksurgeryfashion module

	sksurgeryrgbunet module

	sksurgerysegstats module

	sksurgerytf package
	Subpackages
	sksurgerytf.callbacks package
	Submodules

	Module contents





	sksurgerytf.models package
	Submodules

	Module contents





	sksurgerytf.ui package
	Submodules

	Module contents





	sksurgerytf.utils package
	Submodules

	Module contents









	Module contents












          

      

      

    

  

    
      
          
            
  


sksurgeryfashion module




          

      

      

    

  

    
      
          
            
  


sksurgeryrgbunet module




          

      

      

    

  

    
      
          
            
  


sksurgerysegstats module




          

      

      

    

  

    
      
          
            
  


sksurgerytf.callbacks.segmentation_history module

Module to implement callback to save an image, with segmentation.


	
class sksurgerytf.callbacks.segmentation_history.SegmentationHistory(tensor_board_dir, data, number_of_samples, desired_number_images)

	Bases: keras.callbacks.Callback

Class to implement Tensorboard callback to save a batch of images and their
segmentations, so we can monitor progress directly in Tensorboard.


	
on_epoch_end(epoch, logs)

	Called at the end of each epoch, so we can log data.
:param epoch: number of the epoch
:param logs: logging info, see docs, currently unused.






	
save_to_tensorboard(npyfile, step)

	Write a set of images, in a format suitable for Tensorboard.


	Parameters

	
	npyfile – block of data, see above method.


	step – some int to indicate progress, e.g. batch number or epoch.



















          

      

      

    

  

    
      
          
            
  


sksurgerytf.callbacks package


Submodules



	sksurgerytf.callbacks.segmentation_history module







Module contents





          

      

      

    

  

    
      
          
            
  


sksurgerytf.models.fashion module

Module to implement a basic classifier for the Fashion MNIST dataset.
The aim of this module is to demonstrate how to create a class
that can be developed, tested and re-used effectively. It is not
a demonstration on how to do deep learning, or classification per se.

Inspired by
TensorFlow tutorials [https://www.tensorflow.org/tutorials/keras/classification].


	
class sksurgerytf.models.fashion.FashionMNIST(logs='logs/fit', model=None, learning_rate=0.001, epochs=1)

	Bases: object

Class to encapsulate a classifier for the Fashion MNIST dataset.


	
extract_failures(number_to_fetch)

	Returns incorrectly classified test images.
:param number_to_fetch: int, the number to find.

This method is slow, its only for demo purposes.


	Returns

	indexes, images, predicted, labels










	
get_class_names()

	Returns a copy of the valid class names. We return copies
to stop external people accidentally editing the internal copies.
It’s safer in the long run, although in Python easy to work around.


	Returns

	list of strings










	
get_test_image(index)

	Extracts an image from the test data. Useful for unit testing,
as the original data comes packaged up in a zip file.


	Parameters

	index – int [0-9999], unchecked



	Returns

	image, (28 x 28), numpy, single channel, [0-255], uchar.










	
save_model(filename)

	Method to save the whole trained network to disk.


	Parameters

	filename – file to save to.










	
test(image)

	Method to test a single (28 x 28) image.


	Parameters

	image – (28 x 28), numpy, single channel, [0-255], uchar.



	Returns

	(class_index, class_name)










	
train()

	Method to train the neural network. Writes each epoch
to tensorboard log files.


	Returns

	output of self.model.evaluate on test set.














	
sksurgerytf.models.fashion.run_fashion_model(logs, model, save, test)

	Helper function to run the Fashion MNIST model from
the command line entry point.


	Parameters

	
	logs – directory for log files for tensorboard.


	model – file of previously saved model.


	save – file to save weights to


	test – image to test















          

      

      

    

  

    
      
          
            
  


sksurgerytf.models.rgb_unet module

Module to implement a semantic (pixelwise) segmentation using UNet on 512x512.


	
class sksurgerytf.models.rgb_unet.RGBUNet(logs='logs/fit', data=None, working=None, omit=None, model=None, learning_rate=0.0001, epochs=50, batch_size=2, input_size=(512, 512, 3), patience=20)

	Bases: object

Class to encapsulate RGB UNet semantic (pixelwise) segmentation network.

Thanks to
Zhixuhao [https://github.com/zhixuhao/unet/blob/master/model.py],
and
ShawDa [https://github.com/ShawDa/unet-rgb/blob/master/unet.py]
for getting me started, and
`Harshall Lamba <https://towardsdatascience.com/understanding-semantic-segmentation-with-unet-6be4f42d4b47>_,
for further inspiration.


	
predict(rgb_image)

	Method to test a single image. Image resized to match network,
segmented and then resized back to match the input size.


	Parameters

	rgb_image – 3 channel RGB, [0-255], uchar.



	Returns

	single channel, [0=bg|255=fg].










	
save_model(filename)

	Method to save the whole trained network to disk.


	Parameters

	filename – file to save to.










	
train()

	Method to train the neural network. Writes each epoch
to tensorboard log files.


	Returns

	output of self.model.evaluate on validation set, or None.














	
sksurgerytf.models.rgb_unet.run_rgb_unet_model(logs, data, working, omit, model, save, test, prediction, epochs, batch_size, learning_rate, patience)

	Helper function to run the RGBUnet model from
the command line entry point.


	Parameters

	
	logs – directory for log files for tensorboard.


	data – root directory of training data.


	working – working directory for organising data.


	omit – patient identifier to omit, when doing Leave-One-Out.


	model – file of previously saved model.


	save – file to save model to.


	test – input image to test.


	prediction – output image, the result of the prediction on test image.


	epochs – number of epochs.


	batch_size – batch size.


	learning_rate – learning rate for optimizer.


	patience – number of steps to tolerate non-improving accuracy















          

      

      

    

  

    
      
          
            
  


sksurgerytf.models package


Submodules



	sksurgerytf.models.fashion module

	sksurgerytf.models.rgb_unet module







Module contents





          

      

      

    

  

    
      
          
            
  


sksurgerytf.ui.sksurgery_fashion_command_line module

Command line entry point for sksurgeryfashion demo.


	
sksurgerytf.ui.sksurgery_fashion_command_line.main(args=None)

	Entry point for sksurgeryfashion demo.

Keep as little code as possible in this file, as it’s hard to unit test.








          

      

      

    

  

    
      
          
            
  


sksurgerytf.ui.sksurgery_rgbunet_command_line module

Command line entry point for 2D RGB Unet script.


	
sksurgerytf.ui.sksurgery_rgbunet_command_line.main(args=None)

	Entry point for sksurgeryrgbunet script.

Keep as little code as possible in this file, as it’s hard to unit test.








          

      

      

    

  

    
      
          
            
  


sksurgerytf.ui.sksurgery_segstats_command_line module

Command line entry point for sksurgerysegstats script.


	
sksurgerytf.ui.sksurgery_segstats_command_line.main(args=None)

	Entry point for sksurgerysegstats script.

Keep as little code as possible in this file, as it’s hard to unit test.








          

      

      

    

  

    
      
          
            
  


sksurgerytf.ui package


Submodules



	sksurgerytf.ui.sksurgery_fashion_command_line module

	sksurgerytf.ui.sksurgery_rgbunet_command_line module

	sksurgerytf.ui.sksurgery_segstats_command_line module







Module contents

scikit-surgerytf





          

      

      

    

  

    
      
          
            
  


sksurgerytf.utils.segmentation_statistics module

Module to implement various segmentation statistics for evaluation.


	
sksurgerytf.utils.segmentation_statistics.calculate_dice(gold_standard, segmentation)

	Computes dice score of two boolean images.

Inspired by NiftyNet.


	Parameters

	
	gold_standard – gold standard / reference image.


	segmentation – segmented / predicted / inferred image.






	Returns

	dice score










	
sksurgerytf.utils.segmentation_statistics.check_same_size(image_a, image_b)

	Check shape the same.


	Parameters

	
	image_a – image


	image_b – image






	Returns

	










	
sksurgerytf.utils.segmentation_statistics.get_confusion_matrix(gold_standard, segmentation)

	Compute the confusion matrix of 2 boolean images.

Inspired by NiftyNet.


	Parameters

	
	gold_standard – gold standard / reference image.


	segmentation – segmented / predicted / inferred image.






	Returns

	2x2 confusion matrix, [[TN, FN],[FP,TP]].










	
sksurgerytf.utils.segmentation_statistics.get_sorted_files_from_dir(directory)

	Retrieves all files in directory, sorted.
:param directory: directory path name
:return: list of file names






	
sksurgerytf.utils.segmentation_statistics.run_seg_stats(gold_standard, segmentation)

	Compares segmentation image(s) to gold standard images(s).


	Parameters

	
	gold_standard – directory, or single image


	segmentation – directory, or single image






	Returns

	list of stats












          

      

      

    

  

    
      
          
            
  


sksurgerytf.utils package


Submodules



	sksurgerytf.utils.segmentation_statistics module







Module contents





          

      

      

    

  

    
      
          
            
  


sksurgerytf package


Subpackages



	sksurgerytf.callbacks package
	Submodules
	sksurgerytf.callbacks.segmentation_history module





	Module contents





	sksurgerytf.models package
	Submodules
	sksurgerytf.models.fashion module

	sksurgerytf.models.rgb_unet module





	Module contents





	sksurgerytf.ui package
	Submodules
	sksurgerytf.ui.sksurgery_fashion_command_line module

	sksurgerytf.ui.sksurgery_rgbunet_command_line module

	sksurgerytf.ui.sksurgery_segstats_command_line module





	Module contents





	sksurgerytf.utils package
	Submodules
	sksurgerytf.utils.segmentation_statistics module





	Module contents











Module contents

scikit-surgerytf





          

      

      

    

  

    
      
          
            
  


Making Re-Usable Code - Some Design Concepts

Matt Clarkson, 2019-10-30

Tutorial is hosted on gitlab [https://github.com/UCL/scikit-surgerytf/blob/master/doc/notebooks/tutorial_reusable_code_design.ipynb], and displayed on readthedocs [https://scikit-surgerytf.readthedocs.io/en/latest/notebooks/tutorial_reusable_code_design.html#].

(in fact, if you are reading this on readthedocs, the page itself is generated from that jupyter notebook)


Pre-requisites

Ensure you have already:


	Understood how to use the PythonTemplate [https://weisslab.cs.ucl.ac.uk/WEISS/SoftwareRepositories/PythonTemplate], and know that we use tox to run pylint, pytest and coverage.


	Done SNAPPYTutorial 01 [https://weisslab.cs.ucl.ac.uk/WEISS/SoftwareRepositories/SNAPPY/SNAPPYTutorial01]


	Done SNAPPYTutorial 02 [https://weisslab.cs.ucl.ac.uk/WEISS/SoftwareRepositories/SNAPPY/SNAPPYTutorial02]




These tutorials are important, as the same PythonTemplate and hence tox and virtualenv layout is used for this project.



The Problem

Problems with research software include:


	Code that only one researcher can run.


	At the end of a project, the code dies, is not re-used, and subsequent researchers feel compelled to re-implement it, in their own nuanced way, thereby wasting time, and also repeating the same loop. This may not be a huge concern in the era of deep-learning, as a new researcher will likely implement something newer and better. But if you want to use an algorithm in any other piece of code, the code must be designed for re-use.


	Hard coded parameters, with unknown history. i.e. what params have been tested? When? With what version of code?






The Solution

A researcher should develop code that:


	is designed for re-use, i.e. a clear, simple interface, so the code can be directly embedded in other third party programs, such as GUI’s or other scripts, without cutting-and-pasting.


	has core functions, run and tested via unit tests.


	has command line entry points so an untrained user can just run it.


	can be used within jupyter notebooks, as this is good for development and supervision meetings.


	can be pip installed by others, and re-used as is, with almost zero effort.


	has no hard-coded parameters.




In this tutorial, we implement a simple classifier in TensorFlow, to demonstrate the above steps. The classification code itself is inspired by the standard Fashion MNIST tensor flow tutorials, such as this one [https://www.tensorflow.org/tutorials/keras/classification] and this one [https://www.tensorflow.org/tensorboard/get_started]. The classifer per se, is not the point of the tutorial. The point is to demonstrate how to make code that can be widely re-used.



The Design

In this notebook, we will step through the design of our Fashion MNIST example, and explain the design choices.


Class interface

First, we can choose either a class-based interface, or a function-based interface. I chose class. A class is a way of grouping data-members and methods into a coherent concept, and providing encapsulation. So, just like a black box, the user doesn’t have to know the internals of how a class works, they can just use the interface. If you chose a function based approach, then related methods are not easily grouped together, and its not obvious how separate methods are related, or in which order
the should or must be called. So in the long run, funtion-based code, with lots of functions gets more disjoint and messy. So I prefer a class.

So, in file sksurgerytf/models/fashion.py we basically have the following, written as pseudo-code:

class FashionMNIST:
    __init__(params)
    train()
    test(image_to_classify)





where


	The constructor is responsible for initialising the network. See this [https://martinfowler.com/articles/injection.html] article by Martin Fowler, and how the class is loading/preparing data. Also see this [http://localhost:8888/notebooks/fashion_design.ipynb] on RAII and books by Scott Meyer to get the idea that once the constructor is complete, you should have a fully usable object. i.e. you must never allow an unusable or unready object to exist.


	train() method to train the network. In this example, the train() method is called from within the constructor. You could call it separately.


	test() method to classify each new image. This would be something that a 3rd party user would call, without knowing what goes on inside the black box.




So, by using encapsulation, and a simple class API, we have addressed point 1 of our proposed solution.



Modules for Functions/Classes and Unit Tests

Under sksurgerytf/ we can put any other sub-modules, classes and functions as necessary.

For example:

sksurgerytf/maths/matrix_algebra.py





would have its corresponding unit test:

tests/maths/test_matrix_algebra.py





However, that said, its difficult to unit test large networks that take days/weeks to train. Unit tests must be fast, so in all likelihood, we are talking about testing small individual functions. Try to break out your functionality into bits you can test without running a full training cycle, i.e. test with dummy data.

So, by separating classes and functions, and having separate unit tests, we will address point 2 of our proposed solution.



Command Line Entry Point

For bash scripting, or for working with other people, it is useful to have a command line entry point. This repo provides a pattern that you can just copy for each command line entry point.

So, the top level python script:

sksurgeryfashion.py





contains:

from sksurgerytf.ui.sksurgery_fashion_command_line import main





which runs a command line parser in

sksurgerytf/ui/sksurgery_fashion_command_line.py





which calls through to the fashion.py module created above.

In this way, a non-trained user can just run the code, like this:

# To setup the same virtualenv as tox installed
source .tox/py36/bin/activate

# Run program, just printing command line args
python sksurgeryfashion.py --help





So, we now have the same code called by unit tests (point 2) AND a command line program (point 3), so, we have addressed point 3 of our proposed solution.



Running via Jupyter Notebook

Thanks to this blog post [https://anbasile.github.io/programming/2017/06/25/jupyter-venv/] from Angelo Basile.

The reason we started with a standard python script is because once a network is developed, its more likely to be run in standard python scripts, on a cluster/GPU node, or embedded in a larger program using the Python import mechanism. So the design above supports this. However, Jupyter notebooks are useful for development, and for writing up weekly supervisions. Here is an example of how to run our FashionMNIST class inside a jupyter notebook.


NOTE:

This relies on 3 things:


	In the top level tox.ini, see commands_pre=ipython kernel install --user --name=sksurgerytf which creates a python kernel inside the tox environment.


	You must ensure you start jupyter within the tox environment.




# If not already done.
source .tox/py36/bin/activate

# Then launch jupyter
jupyter notebook






	Then when you navigate to and run this notebook, select the sksurgerytf kernel from the kernel menu item, in the web browser.





[1]:





# Jupyter notebook sets the cwd to the folder containing the notebook.
# So, you want to add the root of the project to the sys path, so modules load correctly.
import sys
sys.path.append("../../")

# This will load the module, create the network, and run a simple training.
# If this completes without errors, we have a valid way of running notebooks.
from sksurgerytf.models import fashion as f
fmn = f.FashionMNIST()














Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #
=================================================================
flatten (Flatten)            (None, 784)               0
_________________________________________________________________
dense (Dense)                (None, 128)               100480
_________________________________________________________________
dense_1 (Dense)              (None, 10)                1290
=================================================================
Total params: 101,770
Trainable params: 101,770
Non-trainable params: 0
_________________________________________________________________
Train on 60000 samples, validate on 10000 samples
60000/60000 [==============================] - 4s 75us/sample - loss: 0.4985 - accuracy: 0.8249 - val_loss: 0.4560 - val_accuracy: 0.8366
10000/1 - 0s - loss: 0.3516 - accuracy: 0.8366






So, the ability to run the same class in a jupyter notebook, accomplishes point 4.




Make Code Pip-Installable

The top level setup.py is responsible for installing a python package/module in a users environment according to normal python conventions. Normally, to distribute code, you would do:


	Install your code on PyPi.org. See this [https://weisslab.cs.ucl.ac.uk/WEISS/SoftwareRepositories/SNAPPY/snappytutorial02] tutorial.


	The 3rd party user then just does pip install to install it




Alternatively, the 3rd party user would:


	git clone your repository


	Does pip install . in the top-level folder.




Both of these methods need setup.py

So, you should edit setup.py, paying particular attention to:


	Setting your name and email address


	Ensuring install_requires matches requirements.txt for all 3rd party dependencies, including all the version numbers. Unfortunately, we don’t have a nice way of avoiding this duplication yet.




However, we also want our command line apps to be pip-installed to. The section:

'console_scripts': [
    'sksurgeryfashion=sksurgerytf.ui.sksurgery_fashion_command_line:main',
],





creates a new command line application called sksurgeryfashion that runs the same main function as above. This command line application does not have a .py extension, and does not need running via the python interpretter. To the end-user it looks like any other shell command (e.g. native unix/bash/windows commands).

So, for each of your command line apps, you should create an entry under console_scripts that will allow a 3rd party user to run your code, without knowing how any of it works.

This then accomplishes point 5 on the above list.



A Note On Object Re-Use

Consider the two code fragments, written as pseudo-code:

class FashionMNIST()
    __init__()
    set_param1(param1)
    set_param2(param2)
    set_param3(param3)
    train()
    test()





which only has constructor arguments, and no setters. Compare this with:

class FashionMNIST()
    __init__(param1, param2, param3)
    train()
    test()





which is best?

Arguably it depends what you are trying to achieve. However, it becomes interesting if you want to re-use an object. In the first example, its not obvious if calling the setters is mandatory, and in which order they should be called. Also, if you train() once, then call a setter and train() again, what should the expected behaviour be? The object is being re-used, so does the training re-start from scratch or where it left off? Does the new parameter value take effect for the second
training, or does setting a parameter value cause the training to restart? All of these points can of course be clarified with effective documentation for each method.

However, the point about the second example is that its more obvious to the 3rd party that the object is designed not to have the parameter values set once the object is constructed. In other languages such as C++ this can be enforced via public, protected, private mechanisms. The fact that Python doesn’t protect variables shouldn’t dissuade you from the general idea that it is best to define the code to automatically indicate to the end user, the way in which a class is meant to, or
designed to be used.

So, I would use these two types of class design to indicate what my intention was, in terms of re-use.

In general, I prefer to use constructor arguments, and no setters. The user should at least get the idea that to test new values, and new settings of hyperparameters for example, they are then required to make a new object, which makes it fairly obvious that the training is then starting from scratch. So, try to make the class design informative of how the class should/must be used.



Hard-Coded Parameters

General advice would be to avoid hard-coded parameters. However, a researcher may have spent a lot of time optimising a given parameter, and specifically does not want anyone else to change this value. Or, a parameter value may not have been extensively tested or validated, so what should a researcher do then? There is a trade off between providing 3rd party users with extra parameters to tweak and hence extra flexibility, and the downside of 3rd party users complaining “your code doesn’t work
with parameter X set to value Y, why not?”

So the general advice might be better phrased as: “Provide tunable parameters, where you think there is some benefit to doing so, and you have reasonable expectation that it would be useful to 3rd parties”.

Then, following from the conversation above, you just have to decide if they should be constructor arguments, and no setter methods provided, or a class with default constructor, and setter methods.



Other Thoughts


	What if your network is not a classifier? Same principles apply. Users still want a nice simple interface, even if the internal workings of your class is fairly complex.


	What about global parameters? Don’t make global variables. Try class member variables, and initialise in constructor.






Logging

And finally, make sure you log as much stuff as reasonable.






          

      

      

    

  

    
      
          
            
  


Making Re-Usable Code - An Experiment Writeup Example

Matt Clarkson, 2019-11-02

Tutorial is hosted on gitlab [https://github.com/UCL/scikit-surgerytf/blob/master/doc/notebooks/tutorial_reusable_code_example.ipynb], and displayed on readthedocs [https://scikit-surgerytf.readthedocs.io/en/latest/notebooks/tutorial_reusable_code_example.html#].

(in fact, if you are reading this on readthedocs, the page itself is generated from that jupyter notebook)


Pre-requisites

Ensure you have already:


	Understood how to use the PythonTemplate [https://weisslab.cs.ucl.ac.uk/WEISS/SoftwareRepositories/PythonTemplate], and know that we use tox to run pylint, pytest and coverage.


	Done SNAPPYTutorial 01 [https://weisslab.cs.ucl.ac.uk/WEISS/SoftwareRepositories/SNAPPY/SNAPPYTutorial01]


	Done SNAPPYTutorial 02 [https://weisslab.cs.ucl.ac.uk/WEISS/SoftwareRepositories/SNAPPY/SNAPPYTutorial02]




These tutorials are important, as the same PythonTemplate and hence tox and virtualenv layout is used for this project.


	In addition, this tutorial follows on from this one [https://scikit-surgerytf.readthedocs.io/en/latest/notebooks/tutorial_reusable_code_design.html#], hosted here on gitlab [https://github.com/UCL/scikit-surgerytf/blob/master/doc/notebooks/tutorial_reusable_code_design.ipynb].






Introduction

The aim of this notebook is to serve as an example for weekly supervisions with your research supervisor. The researcher should:


	be able to run code


	be able to write notes




and hence this Jupyter notebook is like the traditional lab book. This notebook demonstrates how you might write up a specific experiment. This need not be verbose. You are not writing a scientific paper. Bullet point lists should be sufficient.



What about versioning?

Question: Do you need to maintain new versions of this workbook for each supervision meeting?

Answer: No. Just use version control. Commit code before each presentation to your supervisor. The current version just represents the current state-of-play. You can always go back to previous versions.



Background


	Provide links to the most relevant papers.


	Why are you doing this experiment?






Hypothesis


	Write down any preconditions, assumptions, caveats.


	Write down the hypothesis for a valid experiment.






Method


	Outline how you will test the hypothesis.


	Provide links to data-sources.






Experiments


	Include anything else you can think of relevance, before diving into code.





[24]:





# Jupyter notebook sets the cwd to the folder containing the notebook.
# So, you want to add the root of the project to the sys path, so modules load correctly.
import sys
sys.path.append("../../")








[25]:





# Import other packages and modules
from sksurgerytf.models import fashion as f








[26]:





# Run something. Here, we just demonstrate that we can run TensorFlow via Keras API.
# More specifically, we create an instance of an object in this project.
fmn = f.FashionMNIST()













Model: "sequential_1"
_________________________________________________________________
Layer (type)                 Output Shape              Param #
=================================================================
flatten_1 (Flatten)          (None, 784)               0
_________________________________________________________________
dense_2 (Dense)              (None, 128)               100480
_________________________________________________________________
dense_3 (Dense)              (None, 10)                1290
=================================================================
Total params: 101,770
Trainable params: 101,770
Non-trainable params: 0
_________________________________________________________________
Train on 60000 samples, validate on 10000 samples
60000/60000 [==============================] - 6s 93us/sample - loss: 0.4989 - accuracy: 0.8252 - val_loss: 0.4266 - val_accuracy: 0.8512
10000/1 - 0s - loss: 0.3458 - accuracy: 0.8512








Results

Here’s some ideas of what to present, and examples of how to present them.


Graphs of Loss

The class used above writes tensorboard log files. That might be easier to analyse.



Hyperparameter tuning

I would make sure my class object could be created with all the right parameters in the constructor. Then I’d write a script, and run it on cluster machines, writing results to log files. Then i’d collect up the log files, extract the results, save some simple .csv table and import it here, using numpy or pandas. So, this workbook would just contain the results, and the analysis of those results. I wouldn’t do much hyperparameter tuning from within a notebook.



Example Images

As per Andrew Ng’s suggestions, pick 100 falsely classified images, display an image thumbnail, along with incorrect result, and the correct result. In this case, we just pick the first 5.


[27]:





indexes, images, predicted, labels = fmn.extract_failures(5)








[28]:





print(indexes)













[12, 17, 23, 25, 29]







[29]:





print(predicted)













[5, 2, 5, 2, 4]







[30]:





print(labels)













[7, 4, 9, 4, 3]







[31]:





%matplotlib inline

import matplotlib.pyplot as plt

number_of_images = len(indexes)

fig = plt.figure(figsize=(20, 150))

for counter in range(number_of_images):
    a = fig.add_subplot(1, number_of_images, counter+1)
    imgplot = plt.imshow(images[counter])
    a.set_title("Classified as:" + str(predicted[counter]) + ", instead of:" + str(labels[counter]))













[image: ../_images/notebooks_tutorial_reusable_code_example_14_0.png]







Conclusions

The aim of the notebook was just to show that brief notes, of code, mixed with text can be an effective way to maintain a lab-book. Furthermore, it can simply by checked in with the current state of your code.

Each example network would probably benefit from different ways of plotting results.





          

      

      

    

  _static/comment.png





_static/file.png





_static/down-pressed.png





_static/down.png





_static/up-pressed.png





_static/minus.png





_static/plus.png





_static/weiss_logo.png





nav.xhtml

    
      Table of Contents


      
        		
          scikit-surgerytf documentation
        


        		
          scikit-surgerytf
          
            		
              Features/Networks
            


            		
              Design Principles
            


            		
              Usage
            


            		
              Developing
              
                		
                  Cloning
                


                		
                  Running tests
                


                		
                  Linting
                


              


            


            		
              Installing
            


            		
              Contributing
            


            		
              Useful links
            


            		
              Licensing and copyright
            


            		
              Acknowledgements
            


          


        


        		
          Segmentation
          
            		
              Liver Segmentation UNet
            


          


        


        		
          Fashion MNIST Example Classifer
        


      


    
  

_static/up.png





_images/notebooks_tutorial_reusable_code_example_14_0.png
Classified as:5, instead of-7 Classified as:2, instead of:4 Classified as:5, instead of-9 Classified as:2, instead of-4 Classified as:4, instead of-3






_static/comment-bright.png





_images/weiss_logo.png





_static/ajax-loader.gif





_static/comment-close.png





